
1

(Placeholder for copyright notice – the following text is tentative) Permission to make
digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Submitted to LIVE 2016.

Live Tuning:
Expanding Live Programming Benefits to Non-Programmers

Jun Kato Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST)

{jun.kato, m.goto}@aist.go.jp

Abstract
Live Programming allows programmers to gain information
about the program continuously during its development.
While it has been implemented in various integrated devel-
opment environments (IDEs) for programmers, its interac-
tion techniques such as slider widgets for continuous param-
eter tuning are comprehensible for people without any prior
knowledge of programming and have been widely used for
a long time. In this paper, we aim to introduce prior work on
Live Programming research from the interaction point of
view and relate it to Human-Computer Interaction research.
We then name the subset of Live Programming interaction
that only involves changes in constant values “Live Tuning.”
Our example IDEs that implement both Live Programming
and Live Tuning interactions are showcased, followed by the
discussion on the possible future direction of programming
experience (PX) research.

Categories and Subject Descriptors H.5.2. [Information
interfaces and presentation (e.g., HCI)] User Interfaces –
GUI; D.2.6. [Software Engineering] Programming Envi-
ronments – Integrated environments.

General Terms Design, Human Factors, Languages.

Keywords Live programming; live tuning; user interface;
human-computer interaction; integrated development envi-
ronment; programming language.

1. Introduction
Live Programming aims to eliminate the gap between the
static source code and dynamic behavior of programs,
providing continuous feedback of program content to
programmers. It allows programmers to edit the program
without halting its execution. The programming activity in
an integrated development environment (IDE) can be di-
vided into coding (defining new behavior), executing the

program (observing the new behavior), and debugging it (re-
pairing the behavior). Live Programming spans among all of
these activities, and thus, is often considered as an effort to
provide better Programming Experience (PX) that benefits
programmers. It is certain that editing the code and immedi-
ately seeing the results is beneficial for programmers iterat-
ing the development process in exploratory programming.
Though, is the benefit limited to programmers? What if we
do a bit of forward-thinking?

Within Live Programming environments, programs are
always live and editable. When the programs are developed
in the web-based integrated development environments
(WIDEs), the gap between the development and runtime en-
vironments can be eliminated. TouchDevelop [1] already
achieves this in the web browser – anybody can pause the
execution, navigates to the code editor and modify the ap-
pearance of the graphical applications. While TouchDevelop
still requires explicit text-based programming, this implies
potential of Live Programming techniques to be applied to
end-user customization of applications.

To this end, we divide Live Programming experience into
the operations that require prior knowledge of programming
and the operations that do not require programming but just
tuning parameters. While both operations immediately affect
the behavior of applications, we name the latter operations
“Live Tuning” and distinguish it from the fully-featured Live
Programming experience (Figure 1).

Figure 1. Live Tuning interaction based on Live Program-
ming technique allows program customization by users.

http://junkato.jp/live-tuning/

2

Live Tuning does not provide full advantage of program-
ming, but it helps people regardless of their knowledge of
programming to customize the applications to meet their
needs. Live Programming and Live Tuning can be techni-
cally supported by the same implementation but are just dif-
ferent interaction design. The rest of this paper introduces
related work (Figure 2), defines Live Tuning, explains ex-
ample implementations we made, and discusses the future
research direction of Live Programming.

2. Related Work
2.1 Parameter Tuning in Live Programming

Parameter tuning interfaces can be widely found in Live Pro-
gramming environments for improvisation of music and vid-
eos – especially visual programming environments such as
vvvv [2] – and also for developing graphical applications
such as Light Table prototype [3]. Text input is often not
suitable for the continuous parameter tuning since key-
strokes create jumps in values and the output gets dazzling.
For instance, one keystroke can make the value ten times
larger (by adding 0 to the end of an integer value) or smaller
(by hitting the backspace and removing the last 0). The most
typical interface for the purpose is a slider widget that allows
modifying the corresponding constant numeric value with-
out losing continuity. Physical sliders can also be used, as
shown in Juxtapose [4] and lots of live coding environments.
The sliders usually have the minimum and maximum values
with fixed granularity of value range, but the slider interface
can be extended to overcome such limitations such as elastic
scrollbar [5] and zoom slider [6].

Text input and slider interfaces are so popular since most
programming languages have string and numbers as primi-
tive types. Although, “a set of knobs to control a hose’s aim
would be steady, but far less easy to work with [7].” Just as
holding the hose with hands, direct manipulation is obvi-
ously more intuitive for changing positions and sizes of
graphical objects. Such comfortable parameter tuning re-
quires the development environment to be more domain-spe-
cific and have more knowledge about the applications. In the

above case, a certain assumption is that applications are not
for character-based user interfaces but have graphical out-
puts. If the applications deal with Color types, which is the
case for most graphical applications, a color palette should
be added beside the three independent sliders corresponding
to R, G, and B values (e.g. Brackets [8] and other modern
editors). VisionSketch [9] is a live programming environ-
ment for image processing applications that deal with com-
puter vision algorithms. It is capable of graphically drawing
shapes on input images as a means to specify a region of in-
terest (yellow line in the figure) which is more intuitive than
writing down the coordinate values by text. SuperCollider
[10] has various extensions of user interfaces to fine-tune
values used in programs that produce audio signals.

2.2 Testing Programs with Multiple Parameter Values

Even with intuitive user interfaces for continuous parameter
tuning, showing a single output from the program is often
not helpful enough to find the appropriate parameter value.
For instance, if the program involves physical simulation or
is a game and the parameter affects calculation for each
frame, changes over time are more interesting than the last
(or any other specific single) frame in the program execution
history.

There are several ways to visualize changes over time.
Stroboscopic visualizations overlay the frames rendering ob-
jects of interest with a certain transparency (Bret Victor’s
demonstration [11] and Light Table prototype [3]). Timeline
interfaces cast time into x-axis and align frames in the hori-
zontal direction. The interfaces can be found in many back-
in-time debuggers such as Whyline [12] that correlates the
line of code and the graphic object painted by the line. While
ordinary back-in-time debuggers including Whyline do not
provide Live Programming experience, DejaVu [13] is ca-
pable of updating the program output by re-executing pro-
grams with the recorded input. The print function of
YinYang [14] correlates the line of code and the printed text.
It provides a text-based console interface whose feature is
comparable to the Timeline interface where one text line cor-
responds to one frame of interest.

Figure 2. User interfaces for tuning parameters and visualizing program outputs. Underlined bold related work is included.

3

Beside time-coded program outputs, programmers are of-
ten interested in program outputs with multiple parameter
values, too. Subtext [15] and Shiranui [16] allow the pro-
grammers to specify multiple test cases next to the program
code, whose results are updated upon code edits. Subtext re-
quires manual crafting of test cases. The programmers need
to provide input values to the test functions by text input. In
contrast, Shiranui and YinYang allow probing – which es-
sentially allows the programmers to use the execution con-
text around the specified (probed) line of code as input val-
ues to the testing functions. Furthermore, Shiranui allows to
extract the probed context and define it as a new test case.
Please note that all of the above examples target applications
with the character-based output. To our knowledge, there is
not yet a fully-featured Live Programming environment for
graphical applications that allows defining multiple test
cases whose results are simultaneously visualized. Juxta-
pose [4] is close to such instance in that it compiles multiple
variations of the source code of graphical applications, exe-
cutes the variations to create multiple windows, clone mouse
and keyboard input events into each window, and allow sim-
ultaneously testing the variations.

3. Live Tuning
As introduced in the previous section, Live Programming
environments often provide user interfaces for continuously
tuning parameter values. From the perspective of interaction
design, allowing users to tune parameters through sliders and
other interfaces is observed not only in Live Programming
environments but also in general end-user applications such
as Photoshop whose filters can be configured with the slider
interface. If the interfaces for parameter tuning are extracted
from a Live Programming environments and all the other
components for programming (such as the text-based code
editor) are hidden from the user, do we still call it “a pro-
gramming environment?” The answer is probably no, and
thus, programming environments that only allows Live Tun-
ing of parameters but live edits of logics (such as Juxtapose
[4] and Unity [17]) cannot be called Live Programming en-
vironments. However, it does not necessarily mean that ex-
tracting the parameter tuning interfaces and exposing them
to application users are useless.

We foresee that, in the age of web-based IDEs, programs
will not only be edited but also be distributed and executed
within the development environment. Some IDEs are al-
ready connected to the Internet, collecting usage information
and improving its usability [18]. They will become platforms
that cover the application lifecycle. As introduced in related
work, the web version of TouchDevelop is one such example.
It enhances the navigability to the code editor by recording
the correlation between graphical outputs and the code ele-
ment. The user can easily choose a graphical element while

using the application, navigate to the corresponding code el-
ement, and edit the code. This workflow retains the fully-
featured Live Programming experience, but it requires prior
knowledge of programming to modify the behavior of the
application.

Given these discussions, we propose to provide two lev-
els of user interfaces in one IDE. While the one interface
provides fully-featured Live Programming experience, the
other limits the feature to parameter tuning and provides
“Live Tuning” experience. From the end-user point of view,
the proposed “Live Tuning” experience can be almost iden-
tical to the user experience of general applications. Although,
the user interfaces for tuning parameter values are directly
bound to specific code elements and allow deep customiza-
tions of the programs. The detailed discussion will be pro-
vided in the next section along with the brief introduction of
IDEs that we implemented with both Live Programming and
Live Tuning interfaces.

4. Example IDEs
With the direct correspondence between the “Live Tuning”
interface and code elements, it gets straightforward and easy
for the IDE to help programmers collect information on the
application usage. For instance, analysis on parameter values
provides knowledge on an appropriate range of the slider
values. Such crowd-powered analysis is useful for making
applications practical (e.g. visual design exploration [19]). It
also enables the smooth transition from the Live Tuning in-
terface to the Live Programming interface, lowering the bar-
rier to begin programming.

To discuss further benefits of providing Live Tuning in-
terfaces, we introduce two example IDEs as shown in Figure
3. These two IDEs corresponds to the following scenarios,
respectively:

- Parameter tuning is too tedious to be solely handled by
programmers (TextAlive)

- Benefits of Live Programming are desired for all users,
not only programmers (f3.js)

4.1 TextAlive

TextAlive is an Integrated Design Environment that has two
interlinked user interfaces for programmers and designers
[20]. It is a Live Programming environment for developing
programs that render Kinetic Typography (text animation)
videos synchronized with songs in any time and display res-
olutions. The entire video strip is defined as a pure function
of time. Programmers can create algorithms for animating
text whose results are rendered on the canvas. Within
TextAlive, populating Live Tuning interface is as easy as
adding comments to variable declarations. Depending on the
comment format, various kinds of Live Tuning interfaces

4

can be populated such as a color palette, slider, and button to
start drawing freehand paths on the video canvas.

Programmers are good at abstracting the concept of text
animation and write it down as code but are not necessarily
good at choosing appropriate parameters. Designers are the
ones good at such tasks, so TextAlive is equipped with the
user interface for designers. It looks like a professional video
editing software for them and allows intuitive authoring of
Kinetic Typography videos. Within the user interface, there
is a select box to assign algorithms for the animation to text
components. Live Tuning interface appears here to allow ed-
iting parameters for the algorithms. With the Live Tuning
interface, programmers and designers can easily collaborate
on creating new media content.

4.2 f3.js

f3.js is an IDE for creating IoT devices [21]. It allows sim-
ultaneous development of hardware and software of the de-
vices. Programmers can write a single piece of JavaScript
code to define every aspect of the device. Just as a GUI de-
velopment environment, f3.js is equipped with a code editor
and interface builder. New sensor or actuator instances can
be instantiated in the code and added to the interface builder
that shows the development view of the device enclosure.
Event listeners can be added to the instances, allowing to
write event-driven code for controlling the microcontroller.
Within f3.js, populating Live Tuning interface is as easy as
adding comments to variable declarations. Depending on the

type of their initial values, several kinds of Live Tuning in-
terfaces can be populated such as a slider and checkbox.

Since the code defines both appearance and features of
the IoT device, it is possible to declare a variable and change
its value to produce variations of IoT devices. For instance,
the code can contain the useCountdown Boolean variable
declaration to control whether the enclosure contains space
and holes for hosting a circular LED module or not as well
as whether the microcontroller uses the LED module to
countdown before capturing a photo or not. For this Boolean
variable, it is not difficult to create two compiled variations
(with and without the countdown feature) and let the user
choose one. However, a single numeric variable can produce
a number of compiled variations, and a combination of
multiple variables further increases the number. Live Tuning
interfaces eliminate the needs to precompile the information
of the IoT devices, and thus, is essential to enable the end-
user customization of the IoT devices.

5. Discussion
This section discusses the characteristics of Live Tuning in-
terfaces in Live Programming environments and collects rel-
evant research questions to be answered in the future work
on programming experience (PX) research.

5.1 IDEs for Users with Varying Expertise

Live Tuning interfaces are yet another layer of user inter-
faces in Live Programming environments that allow users
without prior knowledge of programming to customize pro-
grams. Existing tools with similar goals include on{X} [22]
and IFTTT. Both of them have two levels of user interfaces
for defining automated tasks. on{X} allows programmers to
write JavaScript code and IFTTT allows to combine specific
kinds of IF and THEN tasks. These created templates are
then passed to people without prior knowledge of program-
ming and customized with their parameter values to satisfy
their needs.

Existing IDEs for Live Programming with similar goals
to Live Tuning include vvvv [2] and VisionSketch [9]. Both
of them are designed for programmers, but they intentionally
separate user interfaces for visual operations (for construct-
ing visual programming nodes and edges) and for text-based
programming, providing similar separation of interactions
for professional and novice users.

Other Live Programming environments can be easily ex-
tended to support Live Tuning interaction. In the TouchDe-
velop environment [1], Live Tuning can be implemented as
support for direct manipulation of the GUI elements. Each
graphical operation updates parameters in the text-based
code defining positions, layouts, font sizes, and other graph-
ical properties of the GUI elements. Threnoscope [23] is a
Live Programming environment that visualizes its audio out-
put as musical scores spreading concentrically. Again, Live

Figure 3. Screenshots of TextAlive (left; textalive.jp) and
f3.js (right; f3js.org). Both are equipped with both Live
Programming and Live Tuning interfaces.

5

Tuning can be implemented as support for direct manipula-
tion on the musical scores that edits the parameter values.

More general Live Programming environments can also
be extended to expose the sliders for the users. Though, such
feature is already provided by the “two-way (bi-directional)
data binding” as seen in GUI development environments and
toolkits such as Visual Studio and Windows Presentation
Foundation (WPF; XAML + C#). As Live Tuning involves
not only programmers but also program users, its effective
implementation reflects what the users want to customize,
often resulting in domain-specific IDE design. To catch their
needs, Human-Computer Interaction point of view is crucial.
What we showed in Section 4 are just two examples and we
expect more to come in the near future.

5.2 Appropriate Flexibility to Edit Programs

Traditionally, to run programs, a “runtime” library is often
needed that corresponds to a development environment such
as “Visual C++ Runtime.” The runtime library is a pre-com-
piled and degraded version of the development environment.
There was no flexibility left to the user to edit programs.

Recently, web browsers are used as a unified platform for
running various programs. Browser-based applications re-
solve the dependencies to external libraries by dynamically
loading them without requiring any user operations. Thanks
to reasonably fast Just-In-Time JavaScript compilers, the li-
braries are often distributed in the form of source code.

When these programs are developed in web-based IDEs
(WIDEs), there is no gap between the runtime and develop-
ment environments. The combination of Live Programming
and WIDEs (e.g. TouchDevelop [1], TextAlive [20], and
f3.js [21]) provides maximum flexibility, allowing to edit
the program during its runtime without losing the context.

The vision of making every tangible software component
editable in place has been long-awaited, and we believe that
the combination has finally realized such dream. Though, we
worry that making every part of the programs editable is not
practical and can be even harmful. Novice users without a
deep understanding of programs easily break the core func-
tionalities of the programs and get confused. This is one rea-
son why we consider there should be multiple levels of user
interfaces that allow varied flexibility to edit the programs.
Live Tuning is in-between “no flexibility” and “maximum
flexibility” provided by the code editor. Discussion on the
use of graphical interfaces (photos, videos, GUIs) as a means
to customize programs can be found in our paper [24].

5.3 Eliminating More Kinds of Gaps for Better PX

Live Programming and other research such as Program Vis-
ualization have addressed the gap between the static repre-
sentation and dynamic behavior of programs. WIDEs have
addressed the gap between the runtime and development en-
vironments. There are, however, still other under-explored

“gaps” in the program development process. Filling them is
important to provide better Programming Experience (PX).

Local vs Remote – When programmers are developing pro-
grams that run on remote computers (e.g. robots, web appli-
cations), there is another gap between the development en-
vironment and deploying environment. The programs need
to be transferred to the target computer before their execu-
tion. When there is only one programmer, it is a matter of
latency. Otherwise, when there are multiple programmers
making edits concurrently, an interaction design to support
collaborative Live Programming is needed. There might be
conflicts between edits made by the programmers.

Existing systems often discard the old edits and adopt the
latest edits and implement efforts to prevent conflicts such
as providing separate namespaces [25]. While more sophis-
ticated conflict resolution can be implemented, conflicts in
the context of collaborative Live Tuning pose a new research
question: is it impossible to aggregate parameter values from
clients and create a new value without annoying the users?
Depending on the type of programs, interesting strategies are
feasible such as 1) calculating the average or median of all
client values, 2) passing the role among the clients at a cer-
tain interval, and 3) creating a poll for the best value. Some
of these interaction has been implemented in Nightbird [26],
a visual Live Programming environment for the improvisa-
tion of visual jockey performance.
Digital vs Physical – When programmers are developing
programs with real-world input and output, there is a further
gap between the computing environment and the real world.
There is a latency for motors to arrive at the specified angle.
Robots spend considerable time to bring things to the speci-
fied location. Heaters need time to heat up. 3D models take
some time to print out. One certain way to address this gap
is to implement a simulation of the real world. For instance,
f3.js can be extended to simulate the physical properties of
sensors and actuators. Then, programmers can write test
cases such as occlusion detection that checks whether a cam-
era module is placed at an appropriate location where other
modules and enclosure of the device is out of the viewport.

It is, however, often difficult and time-consuming to im-
plement practical simulation that resembles the real world
behavior. In addition, the simulation does not necessarily
provide “live feeling” to programmers. For instance, the
usability of IoT devices cannot be checked by the 3D model
on the display but only with its physical representation. To
address such issue, we need to make significant progress in
the research of programmable matter and radical atoms [27].

Furthermore, there will be programs dealing with various
kinds of sensory data such as haptic sensation, taste, and
smell. There is no such established representation of the sen-
sory data that provides live feeling. This issue is critical but
not specific to Live Programming anymore. Picode [28]
tackles a similar problem of lack of intuitive representations

6

of human and robot postures. It extends a programming lan-
guage to use photos as literals that represent posture data.
Photos might also be helpful to represent other sensory data
thanks to human’s cross-modal ability (e.g. photos of flow-
ers can represent their scent). Meanwhile, there is no one-to-
one mapping between each photo and data. Some sensory
data cannot be represented by any photo. There is neither
linear correlation between photos and data. It is often impos-
sible to compare photos and infer the differences between
represented data. For more fluid programming experience,
more investigation on live feeling is needed.

6. Conclusion
We coined the term “Live Tuning” that extends benefits of
Live Programming to people without prior knowledge of
programming by adding interactive user interfaces bound to
source code elements. While Live Tuning does not allow di-
rectly editing program logics as Live Programming does, it
eliminates the risk of breaking the core functionality of pro-
grams and yet enables their deep customizations. It can be
implemented in any Live Programming systems but interest-
ing implementations involve domain-specific knowledge on
applications as shown in example IDEs (TextAlive for ren-
dering videos and f3.js for controlling an IoT device and
printing its enclosure). The discussion opens up broad range
of future work which is not limited to but includes user in-
terfaces for collaborative parameter tuning and intuitive rep-
resentations of parameter values that provide “live feeling.”

References
[1] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux,

Sean McDirmid, Michal Moskal, Nikolai Tillmann, and Jun
Kato. "It's alive! continuous feedback in UI programming." In
Proc. of PLDI '13, pp. 95-104.

[2] Meso group. "VVVV - a multipurpose toolkit." vvvv.org. 2009.

[3] Chris Ginger. "Connecting to your creation." www.chris-
granger.com/2012/02/26/connecting-to-your-creation, 2012.

[4] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and
Scott R. Klemmer. "Design as exploration: creating interface
alternatives through parallel authoring and runtime tuning." In
Proc. of UIST '08, pp. 91-100.

[5] Toshiyuki Masui, Kouichi Kashiwagi, and George R. Borden,
IV. "Elastic graphical interfaces to precise data manipulation."
In Proc. of CHI '95, pp. 143-144.

[6] Wolfgang Hürst, Georg Götz, and Philipp Jarvers. "Advanced
user interfaces for dynamic video browsing." In Proc. of MM
'04, pp. 742-743.

[7] Chris M. Hancock. "Real-time programming and the big ideas
of computational literacy." PhD thesis, MIT, 2003.

[8] Adobe Systems Inc. "Brackets." brackets.io, 2012.

[9] Jun Kato and Takeo Igarashi. "VisionSketch: integrated sup-
port for example-centric programming of image processing
applications." In Proc. of GI '14, pp. 115-122.

[10] James McCartney. "Rethinking the computer music language:
SuperCollider." Computer Music Journal, 26(4), pp. 61-68.

[11] Bret Victor. "Inventing on Principle." Invited talk at CUSEC,
Jan. 2012.

[12] Andrew J. Ko and Brad A. Myers. "Finding causes of program
output with the Java Whyline." In Proc. of CHI '09, pp. 1569-
1578.

[13] Jun Kato, Sean McDirmid, and Xiang Cao. "DejaVu: inte-
grated support for developing interactive camera-based pro-
grams." In Proc. of UIST '12, pp. 189-196.

[14] Sean McDirmid. "Usable live programming." In Proc. of
SPLASH Onward! 2013, pp. 53-62.

[15] Jonathan Edwards. "Example centric programming." In Proc.
of OOPSLA '04, pp. 84-91.

[16] Tomoki Imai, Hidehiko Masuhara, and Tomoyuki Aotani.
"Making live programming practical by bridging the gap be-
tween trial-and-error development and unit testing." In Com-
panion Proc. of SPLASH '15 (poster), pp. 11-12.

[17] Unity Technologies. "Unity - Game Engine." unity3d.com,
2016.

[18] Marcel Bruch, Eric Bodden, Martin Monperrus, and Mira
Mezini. "IDE 2.0: collective intelligence in software develop-
ment." In Proc. of FoSER 2010, pp. 53-58.

[19] Yuki Koyama, Daisuke Sakamoto, and Takeo Igarashi.
"Crowd-powered parameter analysis for visual design explo-
ration." In Proc. of UIST '14, pp. 65-74.

[20] Jun Kato, Tomoyasu Nakano, and Masataka Goto. "TextAlive:
integrated design environment for kinetic typography." In Proc.
of CHI '15, pp. 3403-3412.

[21] Jun Kato and Masataka Goto. "f3.js – IoT apps with enclosures
from single codebase." f3js.org. 2016.

[22] Microsoft. "on{X} - automate your life." www.onx.ms, 2012.

[23] Thor Magnusson. "The Threnoscope: a musical work for live
coding performance." In Proc. LIVE '13 at ICSE.

[24] Jun Kato, Masataka Goto, and Takeo Igarashi. "Programming
with Examples to Develop Data-intensive User Interfaces."
IEEE Computer (Special issue on 21st Century User Interfaces),
vol. 49, no. 7, Jul. 2016, pp. 34-42.

[25] Sang Won Lee and Georg Essl. "Communication, control, and
state sharing in networked collaborative live coding." In Proc.
of NIME '14, pp. 263-268.

[26] Yutaka Obuchi, Jun Kato, Masahiro Hamasaki, Masataka
Goto, and Kentaro Fukuchi. "Nightbird Audience Node: add-
ing audience support to VJ performance based on visual pro-
gramming." github.com/FMS-Cat/nightbird.

[27] Hiroshi Ishii, Dávid Lakatos, Leonardo Bonanni, and Jean-
Baptiste Labrune. "Radical atoms: beyond tangible bits, to-
ward transformable materials." Interactions, 19(1), Jan. 2012,
pp. 38-51.

[28] Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. "Picode: in-
line photos representing posture data in source code." In Proc.
of CHI '13, pp. 3097-310

http://junkato.jp/programming-with-examples/
http://junkato.jp/programming-with-examples/

	Abstract
	Categories and Subject Descriptors H.5.2. [Information interfaces and presentation (e.g., HCI)] User Interfaces – GUI; D.2.6. [Software Engineering] Programming Environments – Integrated environments.
	General Terms Design, Human Factors, Languages.
	Keywords Live programming; live tuning; user interface; human-computer interaction; integrated development environment; programming language.

	1.  Introduction
	2.  Related Work
	2.1  Parameter Tuning in Live Programming
	2.2  Testing Programs with Multiple Parameter Values

	3.  Live Tuning
	4.  Example IDEs
	4.1  TextAlive
	4.2  f3.js

	5.  Discussion
	5.1  IDEs for Users with Varying Expertise
	5.2  Appropriate Flexibility to Edit Programs
	5.3  Eliminating More Kinds of Gaps for Better PX
	Local vs Remote – When programmers are developing programs that run on remote computers (e.g. robots, web applications), there is another gap between the development environment and deploying environment. The programs need to be transferred to the tar...
	Digital vs Physical – When programmers are developing programs with real-world input and output, there is a further gap between the computing environment and the real world. There is a latency for motors to arrive at the specified angle. Robots spend ...

	6.  Conclusion
	References

