
7 Microsoft Research CORE7 Project Summary Booklet

Roboko: Integrating Visual
Representations into a Text-based
Programming Environment

Jun Kato

The University of Tokyo

i@junkato.jp

http://junkato.jp/roboko

1. Project Goal

Current programming environments use textual or symbolic
(e.g. flow chart) representations. This paradigm has worked
well for programming abstract behaviors of software, but is
problematic for programming robots that work in the real
environment. Robots have a physical embodiment and work
in the real world. Textual or symbolic representation does
not help people to understand how the robot works in run
time. For example, if the programmer wants to program a
high degree-of-freedom (high-DOF) robot to reach an arm,
each joint angle must be specified in the code. However, it
is difficult to understand that the code is for arm reaching
by reading the code. Our goal is to address this problem
by integrating photograph-based visual representations
into a text-based development environment. The integrated
development environment (IDE) allows programming-by-
example style instructions for robots.

2. Technical breakthrough

Our prototype implementation of the IDE consists of
two main components: a code editor and an pose library
(Figure 1). Each photograph-based visual representation
is shown inline in the editor and is bound to a set of raw
pose data. In this section, we will describe the workflow
of the programmer with our development environment and
briefly explain its implementation.
First, the programmer captures a photograph and a set
of raw pose data. He clicks “Capture” button in the pose
library and the IDE enters “capture mode.” During this
mode, he can move every joint of the robot, whose actuators
are equipped with rotary encoders, to make a desired
pose. When he is satisfied with the current pose, he takes
a photograph of the robot with a web camera (Figure 2.)

Then, the IDE retrieves corresponding pose data from the
robot. Finally, the captured pose appears as the photograph
with an arbitrary name (e.g. “New pose (1)”) in the pose
library and the IDE leaves “capture mode.” Within the pose
library, the programmer can also rename existing robot pose
(e.g. “Initial pose,” “Right hand up,” etc.,) load existing
robot pose to see the robot in action, view raw pose values,
or delete existing poses.

Second, the programmer starts coding. While he can write
code just as with a standard text-based programming
environment, he can also drag and drop a photograph from
the pose library to the code editor and the photograph is

8IJARC CORE7 project summary booklet

shown inline in the code editor. Behind the scene, the
IDE inserts textual representation of the photograph (e.g.
Roboko.pose(“Right hand up”)) to the dropped position
in the source code. Then, it parses the source code to get
an abstract syntax tree (AST.) Next, the view is updated
according to the AST, showing the corresponding
photograph where its textual representation is found. When
the parsing is failed or the corresponding pose data is not
found, the view is not updated.
During the coding phase, the programmer can benefit from
a software library tightly coupled with the IDE. The library
provides a set of API that enables easy control of robots.
The main functions are shown below:
Pose Robot.getPose() – returns the current pose data.
float Pose.distance(Pose pose) – calculates the distance
between the two poses. [0.0-1.0]
boolean Pose.eq (Pose pose, float threshold) – returns
whether the two poses can be thought of as identical or not.
(returns whether the distance between the two poses is less
than the threshold or not.)
boolean Robot.setPose(Pose pose) – set the current pose to
the specified data.
Action Robot.action() – start building an action for the
robot.
Action Action.pose(Pose pose) – add this pose to the end
of this action.
Action Action.wait(int ms) – wait for the specified time at
the end of this action.
ActionResult Action.play() – play this action.
When the coding is finished, the programmer runs the
program by clicking “Run” button. The simple workflow
described in this section supports iterative cycle of
capturing poses, programming and running applications.
It is expected to enable prototyping process not only for
professional programmers but also for novice programmers
without prior knowledge of robotics.

3. Innovative Applications

While the initial goal of this project focused on programming
robots, developing the prototype of the IDE made us aware
that our method is also applicable to Kinect programming.
We extended the prototype IDE to support Kinect-based
skeletal tracking and allow the programmer to easily make
pose-based applications (Figure 3.)
Given that the behavior of robot and Kinect-based
applications is easy to understand because of the physical

embodiment, our IDE might be a good starting point for
programming learners. Robot and Kinect are both very hot
topic among interaction designers, and thus, our IDE can
help their casual development as well.

4. Academic Achievement

We plan to submit this work to CHI’13: ACM SIGCHI 31th
Conference on Human Factors in Computing Systems, a
top-tier conference in the Human-Computer Interaction
research community. [CHI13]

5. Achievement in Talent Fostering

The principal investigator of the project, Jun Kato, is a Ph.D
student. He attended an internship at Microsoft Research
Asia for 3 months.

6. Collaboration with Microsoft Research

During his internship, Jun collaborated with Dr. Xiang
Cao to investigate potential of this research project. He
developed Kinect extension introduced at 3. Innovative
Applications. Additionally, he started another project and
submitted the result to UIST’12: ACM 25th Symposium on
User Interface Software and Technology.

7. Project Development

The project is still ongoing and there are much work to
be done including user study and further investigation.

9 IJARC CORE7 project summary booklet

Promising direction includes the extension of the IDE to
help broader activity related to the hardware development.
Current contribution of the project is about the IDE whose
text editor is capable of showing photographs captured by
a camera, each of which represents a pose of a robot or a
person. It frees the programmer from struggling with raw
numerical parameters. It is a kind of "what you see is what
you get" interface and is expected to be used by novice
programmers. Thereupon, using photographs benefits not
only programming robot applications but also remembering
how the robot is constructed. For instance, there is an
example application with a LEGO robot in which the robot
waves its hand. Though the LEGO robot can be constructed
in many ways with LEGO bricks, photos bound to raw pose
data tell the others how the robot is constructed.
During the development of a robot application, the
programmer often changes form factors of the robot. It is
a kind of iterative cycle of building a robot (hardware) and
writing its controlling code (software). In such development
process, hardware and software evolve together. Though,
while there is much support for tracking changes of code
such as Subversion and Git, there's no apparent support
for tracking changes of hardware. When the IDE takes
snapshot photos of the hardware (and their corresponding
pose data) during the development process, it can help the
iterative cycle more effectively compared to the existing
development environment.
In addition, when the application development is finished,
the IDE can not only build the executable binary but also
output photo-based step-by-step guidance that tells how
the robot can be constructed. The binary and the guidance
can be distributed together so that other people can run the
application at their home.

8. Publications

Paper publication
1) Roboko: Integrating Visual Representations into a Text-

based Programming Environment, to be submitted
to CHI’13: ACM SIGCHI 31th Conference on Human
Factors in Computing Systems

